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Smooth phases, roughening transitions, and novel exponents in one-dimensional growth model
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A class of solid-on-solid growth models with short-range interactions and sequential updates is studied. The
models exhibit both smooth and rough phases in dimensiond51. Some of the features of the roughening
transition which takes place in these models are related to contact processes or directed percolation type
problems. The models are analyzed using a mean field approximation, scaling arguments, and numerical
simulations. In the smooth phase the symmetry of the underlying dynamics is spontaneously broken. A family
of order parameters which are not conserved by the dynamics is defined, as well as conjugate fields which
couple to these order parameters. The corresponding critical behavior is studied, and novel exponents identified
and measured. We also show how continuous symmetries can be broken in one dimension. A field theory
appropriate for studying the roughening transition is introduced and discussed.@S1063-651X~98!01905-9#

PACS number~s!: 05.40.1j, 05.70.Ln, 68.35.Fx, 64.60.Ak
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I. INTRODUCTION

The statistical properties of moving interfaces and s
faces of growing crystals have been studied extensively
recent years@1#. Various theoretical approaches have be
applied in these studies including field theoretical analyse
continuum Kardar-Parisi-Zhang~KPZ!-type equations@2–4#
and studies of discrete growth processes such as solid
solid ~SOS! or polynuclear growth~PNG! models among
others@4–14#.

One of the more interesting properties of moving int
faces is their roughness. It is well known that ind.2 dimen-
sions, moving interfaces may be either rough or smooth
pending on the level of the noise in the system. Howev
growth processes ind51 dimensions are more subtle. Mo
growth processes governed by short-range interactions,
as those described by the KPZ equation yield a rough in
face. On the other hand, study of a class of PNG mod
suggested that both smooth and rough phases may ex
one dimension~1D! @9,15,16#. However, this class of model
is characterized by two key features:~a! The evolution takes
place by a parallel updating process in which time progres
in discrete steps, and all sites of the interface are upd
simultaneously according to a given rule at any given ti
step. Such dynamics tend to be less noisy than seque
updating processes, in which one site is updated at a time~b!
The models have a maximal velocity by which the upp
most point of the surface can propagate. The existence
maximal velocity in these models is due to the use of para
updates, and the smooth phase disappears when rando
quential ~continuous time! updates are used. An interestin
question is whether a sequential update growth proces
capable of exhibiting smooth and rough phases in 1D.

Some time ago a transition from a smooth to a rou
surface was observed in a SOS model for surface recons
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tion with sequential updates and particle conservation@11#.
The free parameterH is the maximal allowed height differ
ence between adjacent sites, and is a discrete quantity. It
observed that the surface is smooth forH,3, and macro-
scopically grooved forH.3. At H53 the surface appears t
be rough. This phenomenon is clearly related to the lo
conservation law in this model.

Recently, a class of growth processes with short ra
interactions, sequential updates and nonconserved dyna
was introduced@17#. They were demonstrated to exhibit bo
rough and smooth phases in 1D. The dynamics is descr
by SOS models in which adsorption and desorption p
cesses take place in a ring geometry. Depending on the
tive rates of the two processes, one finds either a smooth
rough phase. In studying the roughening transition in th
models, it has been found that some of its features are rel
to those of contact processes, or directed percolation, w
have been extensively studied in the past@18–21#. These
latter systems exhibit a continuous phase transition whic
strongly linked to the existence of absorbing states~a set of
states from which the system cannot escape!. The model in-
troduced in Ref.@17# may be viewed as composed of a ser
of contact processes interacting with each other, whose
namics does not have an absorbing state. This model is
subject of the present paper.

An intriguing question related to the existence of
smooth phase is that of spontaneous symmetry brea
~SSB! and long-range order in one-dimensional systems w
short-range interactions and small but unbounded noise
unbounded noise we mean that in a finite system all mic
scopic configurations can be reached from any initial con
tion in a finite time. It is well known that in thermal equilib
rium no phase transition takes place under these conditi
Systems far from equilibrium@22#, such as moving interface
or driven diffusive systems, are, however, less restrictive
the question of existence of SSB under these conditions
been open for some time. Recently, a simple nonequilibri
model which exhibits SSB in 1D was introduced@23,24#.
This model belongs to a class of driven-diffusive systems
which charges of two kinds are injected at the ends o
t-
4997 © 1998 The American Physical Society
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one-dimensional lattice and are biased to move in oppo
directions. The dynamic rules are symmetric under space
charge inversion. However, this symmetry is broken in
stationary state of the system, where the currents of the
charge species are different. In this model, SSB is the re
of theconservedorder parameter in the bulk~charges are no
created or annihilated except at the boundaries!, and the ex-
istence ofopenboundary conditions. These two condition
favor the emergence of SSB; the conserved dynamics s
down the temporal evolution of the system; moreover, fl
from one broken symmetry phase to another can origin
only at the boundaries where the order parameter is not
served. Initial attempts to modify this model such that eith
or both of these features are eliminated resulted in symme
stationary states with no SSB.

The growth model discussed in the present work provi
a simple example for SSB which takes place far from eq
librium. The breaking of symmetry takes place in the smo
phase, and the order parameter associated with this trans
is not conserved by the dynamics. The model thus dem
strates that SSB can take place in 1D in nonequilibrium s
tems with nonconserved order parameter and ring ge
etries.

In this paper we present a detailed analysis of the gro
models introduced in Ref.@17#. The relation of the models to
contact processes and directed percolation is discussed
several families of novel critical exponents are defined. O
family describes the critical behavior of magnetizationli
order parameters related to the symmetry breaking. Ano
family is related to statistical properties of the interfa
height near the roughening transition. The dynamical eq
tions are analyzed using the mean field approximation, an
field theoretical model appropriate for the roughening tran
tion is introduced. The scaling picture that emerges is
from complete but points to the existence of complex criti
behavior.

The paper is organized as follows: The growth mode
defined in Sec. II. The relation to contact processes and
rected percolation is discussed in Sec. III. In Sec. IV,
results of scaling analysis and numerical studies are
sented. The question of spontaneous symmetry breaking
the family of order parameters and their critical behavior,
discussed in Sec. V. The dynamics of the model is stud
within the mean field approximation in Sec. VI, and a fie
theoretical model appropriate for studying the critical beh
ior of the roughening transition is defined and discussed
Sec. VII. In Sec. VIII, some light is shed on the relation
the model to the polynuclear growth models discus
above, and in Sec. IX the main results are summarized
conclusions drawn. Finally, a particular case for whi
steady state can be calculated exactly is presented in
Appendix.

II. MODEL DEFINITIONS

The class of models is most simply introduced in terms
the growth of a one-dimensional interface, in which bo
adsorption and desorption processes take place. In
present models the key feature is that desorption may
place only at the edge of a plateau, i.e., at a site which ha
least one neighbor at a lower height. We study two particu
te
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models in this class,~a! a restricted solid on solid~RSOS!
version where the height differences between neighbo
sites are restricted to take values 1, 0, and21; and ~b! an
unrestricted model where there is no such restriction. B
models are defined on a 1d lattice ofN sitesi 51, . . . ,N and
associated with each site is an integer height variablehi
which may take values 0,1, . . . ,̀ . Periodic boundary condi-
tions are imposed so thathN1 i5hi .

The dynamics are defined through the following alg
rithm: at each update choose a sitei at random and carry ou
one of the following processes: Adsorption of an adatom

hi→hi11 with probabilityq ~1!

or desorption of an adatom from the edge of a step

hi→ min~hi ,hi 11! with probability~12q!/2, ~2!

hi→ min~hi ,hi 21! with probability~12q!/2. ~3!

The update of the chosen sitei is conveniently implemented
in a simulation by drawing a random number between 0 a
1 from a flat distribution. If the number is less thanq process
~1! is executed, if the number is greater than (11q)/2 pro-
cess~2! is executed; otherwise process~3! is executed.

In the RSOS version, a process is only carried out i
respects the constraint

uhi2hi 11u<1. ~4!

For both models, when the growth rateq is low, the de-
sorption processes~2! and~3! dominate. If all the heights are
initially set to the same value, this layer will remain th
bottom layer of the interface. Small islands will grow on to
of the bottom layer through process~1!, but will quickly be
eliminated by desorption at the island edges. Thus the in
face is effectively anchored to its bottom layer, and the
locity, defined as the rate of increase of the minimum hei
of the interface, is zero in the thermodynamic limit. On
finite system, very large fluctuations will occasionally occ
which allow a new layer to be completed, and the veloc
will be positive but exponentially small in the system size

As q is increased, the production of islands on top of t
bottom layer increases, until aboveqc , the critical value of
q, the islands merge and new layers are formed at a fi
rate giving rise to a finite interface velocity in the thermod
namic limit. Thus, above the transition one, expects the
locity to behave as

v;~q2qc!
y, ~5!

where y is the critical exponent describing the growth
velocity.

Another critical exponent is defined by consideringn0,
the fraction of sites at the lowest level~see Fig. 1!. Below the
transition (q,qc) this fraction will be large, since the inter
face is anchored at this level. As the transition is approac
more and more islands form on top of the bottom layer, a
the fractionn0 will decrease until it vanishes at the trans
tion. This may be described by

n0;~qc2q!x0. ~6!
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Similarly, one may define a family of exponents$xk% de-
scribing the vanishing ofnk , the fraction of sites at levelk,
as

nk;~qc2q!xk. ~7!

The interface width is defined by

W5FN21(
i

S hi2N21(
j

hj D 2G1/2

. ~8!

Below the transition the width should be finite, indicating
smooth interface exploring only a finite height above t
bottom layer. However, above the transition the interfa
should display the behavior generic to moving interfaces@2#,
that is, roughening where the width diverges as

W;N1/2 at q.qc . ~9!

Therefore, near to and above the transition, we expect

W;N1/2~q2qc!
x, ~10!

where x is the exponent describing the vanishing of t
roughness as the transition is approached.

The above considerations hold for both RSOS and un
stricted models, and and we will address the question a
what extent the two models can be seen as representativ
a whole class of models with the same critical behavior.
Sec. IV we will further explore the scaling behavior, addi
to the exponentsy, xk , andx that we have so far introduced
However, we defer this until after Sec. III, where we discu
the relation to a directed percolation model through wh
some of the simple critical behavior may be understood.

For the moment we note that the RSOS version~4! may
be viewed as a driven diffusion model of two opposite
charged types of particles. The charges

ci5hi2hi 21P$2,0,1% ~11!

are bond variables, and represent a change of height betw
adjacent interface sites~see Fig. 1!. In this representation, i
is convenient to convert the dynamical rules~1!–~3! into
processes occurring at bonds with the followingrates

FIG. 1. ~a! Typical configuration of the interface.nk is the frac-
tion of sites at heightk above the minimal height in the configura
tion ~heren05n15

4
9, n25

1
9 ). The average island size grown on to

of level k is l k . ~b! Mapping of the configuration of~a! to the
charged-particle representation@see Eq.~11!#, along with a site col-
oring, as described in Sec. V.
e
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0 1→ 1 0 with rateg,

1 0→ 0 1 with rate 1,

2 0→ 0 2 with rateg,

0 2→ 2 0 with rate 1, ~12!

0 0→ 1 2 with rateg,

1 2→ 0 0 with rate 2,

2 1→ 0 0 with rateg,

where the growth rateg is related toq of Eqs. ~1!–~3!
through

g52q/~12q!. ~13!

The rule that desorption cannot occur from the middle o
plateau corresponds to the absence of the process
→ - 1. In this version, the dynamics may be perform
without reference to the height variableshi ~although these
can easily be reconstructed to within the height of the bott
layer from the variablesci). The critical behavior is reflected
in the correlations between the charges. Atq,qc , the
charges are arranged as closely bound1 2 dipoles. At q
.qc , the dipoles become unbound, and the fluctuations
the total charge, measured over a distance of orderN, di-
verge withN.

The charged particle representation also allows the ef
of desorption from the middle of a plateau to be studied. T
is done in the Appendix by introducing a nonzero ratep for
the process 0 0→2 1 and solving the steady state exact
in the casep512g/2. The result is that, although differen
choices of this rate allow the interface velocity to be positiv
zero, or negative, the interface is always rough and
smooth phase exists.

III. RELATION TO DIRECTED PERCOLATION
AND CONTACT PROCESSES

Some of the critical behavior described in the previo
section may be related to that of directed percolation~DP!. In
DP, sites of a lattice are either occupied by a particle
empty. The dynamical processes are that a particle can
annihilate or produce an offspring at a neighboring em
site. If the rate of self-annihilation is sufficiently high th
system always reaches an absorbing state where no par
remain, and therefore no further particle can be produced.
the other hand, when the rate of offspring production is hi
another steady state of the system, where the density of
ticles is finite, exists on the infinite lattice and is termed t
active phase.

In DP the dynamics is usually carried out in parallel, e.
Ref. @21#. In the corresponding models in the mathemati
literature, known as contact processes@19#, the dynamics are
defined in continuous time, which can be numerically imp
mented by random sequential dynamics.

To see the analogy with the growth model defined in S
II, consider the dynamics of the bottom layer of the un
stricted model. Let us introduce variables$si% which take
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value 1 if the height of sitei is that of the bottom layer, and
take value zero otherwise. The algorithm stated in Eqs.~1!–
~3! is exactly equivalent to the following dynamics for$si%.
At each update randomly select a sitei and modifysi with
the following probabilities:

if si51, si→0 with prob.q;

if $si 21 ,si ,si 11%5$0,0,1%, si→1 with prob.~12q!/2;
~14!

if $si 21 ,si ,si 11%5$1,0,0%, si→1 with prob.~12q!/2,

if $si 21 ,si ,si 11%5$1,0,1%, si→1 with prob. 12q.

This dynamics is exactly that of a contact process when
takesi51 to indicate the occupation of a site: the partic
self-annihilate with ratel5q/(12q), and a particle is cre-
ated at a vacant site with rate12 if one neighbor is occupied
and rate 1 if both neighbors are occupied. This process
been extensively studied by series expansions@25# and short
time expansions@26# and the transition found to occur a
lc.0.3032 corresponding toqc.0.2327 for the unrestricted
growth model. Thus, as seen by the bottom layer of
growing interface, the transition from anchored to movi
phase is simply a DP transition. The anchored phase co
sponds to the active DP phase, whereas the moving p
corresponds to the absorbing DP phase.

The critical behavior of DP may be described as follow
Above the transition (l.lc), an initial seed particle will
typically produce activity over a region of lateral extentj'

;ueu2n' and durationj i;ueu2n i, before the absorbing stat
is reached. Heree, given by

e5q2qc , ~15!

measures how far the system is from criticality, andj' and
j i are interpreted as spatial and temporal scaling leng
which diverge at the transition. Below the transition (l
,lc) the densityn of occupied sites in the active phase
n;ueub, and there is a finite probabilityueub that an initial
seed particle will result in the active phase being reach
The lateral extent of such an active cluster grows with ti
as tz, wherez5n i /n' is the dynamic exponent. The typica
size l of regions containing no activity diverges as the tra
sition is approached asl;n21;ueu2b.

These exponents allow one to readily identifyy and x0
defined in Eqs.~5! and~6!. Sincen0 corresponds to the den
sity of occupied sites in the DP active phase, we expect
Eq. ~6!,

n0;~qc2q!b and x05b. ~16!

In the moving phase the velocity is given by the inverse
the typical time for the bottom layer to be covered over. W
identify this time scale with the lifetime of active regions
the DP absorbing phase, and in Eq.~5! we expect

v;1/j i;~q2qc!
n i and y5n i . ~17!

Thus we see that the two exponentsx0 and y that describe
quantities involvingonly the dynamics of the bottom laye
may be directly identified with known~numerically! DP ex-
e
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ponents. Exponents describing quantities involving hig
levels of the growth process such asxk given by Eq.~7! are
not so straightforward, as we shall see in Secs. IV and V

In this section the exact mapping of the bottom layer
the unrestricted growth model to DP has been described.
the RSOS model there is no such exact mapping; never
less, we expect the bottom layer to exhibit DP behavior a
relations~16! and ~17! to hold, because the phase transiti
in this model should display a robustness with respect to
microscopic rules similar to that found in DP models.

IV. SCALING AND NUMERICAL RESULTS

So far we have seen that, as criticality is approached fr
the smooth phase, the scaling properties of some quant
involving only the bottom level of the interface may be a
equately described using DP exponents. However, for m
general quantities the scaling is less clear cut, and ind
only a partial picture emerges. We first deal with propert
of the first few layers in the smooth phase using heuris
arguments, and then compare them to numerical results.
width W, a quantity involving all layers, is studied next. It
argued that a simple scaling picture, involving only the D
correlation lengthj' , does not hold. We provide evidence
suggest that other length scales may be important as crit
ity is approached from within the moving phase. A part
scaling picture which emerges is then summarized.

A. Scaling properties of the first few layers

We now discuss the scaling properties of the first f
layers k51,2, . . . above the bottom layer. Since, in th
smooth phase, the scaling properties at the bottom layek
50) are completely characterized by the three DP expon
x05b, n' , and n uu , it is natural to assume that the ne
layers obey similar scaling laws with analogous expone
xk5b (k), n'

(k) , andn uu
(k) , where, for example,xk is the den-

sity exponent defined in Eq.~7!. In principle, all these expo-
nents could be different and independent. Our numerical
sults, however, suggest that the scaling exponentsn'

(k) and
n uu

(k) areidentical on all levelsand equal to the DP exponen
n' andn uu . This remarkable property implies that the grow
process at criticality is characterized by asingle anisotropy
exponentz5n uu /n' . On the other hand, we find numerical
that the density exponentsxk for k51,2, . . . aredifferent
and considerably reduced compared to their DP valuex0
5b. It appears that these exponents are nontrivial in
sense that they are not simply related to DP exponents.

In order to explain the reduced values ofxk , we present a
simple heuristic argument@17#. Let us first consider the bot
tom layerk50. As explained in Sec. III, DP is characterize
by two length scales: the average size of inactive islandl 0

;n0
21;ueu2b, and the spatial scaling lengthj';ueu2n'

@27#. They both are related, for a system of sizeN, by the
finite-size scaling relationl 0;ueu2b f (Nueun'), where f is a
function satisfyingf (s);sb/n' for s→0, implying that on a
finite system at criticality one hasn0; l 0

21;N2b/n'. Now
consider the next layerk51. One may view the sites a
heightsk>2 as islands of active sites growing on top of t
inactive islands of thek51 level, whose typical size isl 0.
Applying the same scaling relations, and assuming that
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system size may be replaced byl 0, we find n1; l 1
21

; l 0
2b/n', wherel 1 is the mean size of islands of sites wi

height k>2. Repeating this argument one obtainsnk; l k
21

; l k21
2b/n' , and therefore

nk;ueuxk, xk5b~b/n'!k. ~18!

Inserting the numerically known DP exponents@28#

b50.276 49~4!, n uu51.733 83~2!, n'51.096 84~2!,

we obtain the approximationsx1.0.070,x2.0.017, andx3
.0.004, which are in qualitative agreement with the nume
cal results~see below!. However, this simple scaling argu
ment is not quantitatively correct for several reasons. F
we consider the temporal average of the island sizel 0 as a
fixed ‘‘finite-size’’ length for a DP process taking place o
top of the island; we thus neglect the temporal fluctuations
l 0. In addition, unlike exact scaling relations, our scali
argument is expected to fail in higher dimensions, since
derived in the case of one dimension where active sites s
rate inactive island. Nevertheless, it can be used as a ro
approximation as well as a qualitative explanation for
strongly reduced values ofxk compared tox0 for k>1.

B. First few layers–numerical results

In order to determine the density exponentsxk and to
verify that the scaling exponentsn'

(k) and n uu
(k) are indeed

identical, we employ three different variants of Monte Ca
~MC! simulations, termed dynamic, static, and finite-s
simulations, described as follows.

Dynamic simulations: First we measure the temporal ev
lution of the densitiesnk at criticality in a large system
starting from a flat interface and averaging over a large nu
ber of runs. For times larger than some transient time,
densities are expected to decay according to

nk;t2xk /n uu. ~19!

Static simulations: We also determinexk directly in off-
critical ~static! simulations, measuring the densitiesnk in a
sufficiently large system in the smooth phase and avera
over very long times. Using this method we can determ
the exponentsxk directly through the expected behavior

nk;ueuxk, ~20!

wheree5q2qc,0.
Finite-size simulations: Finally we analyze the finite-size

scaling ofnk in critical systems of sizeN averaged over long
times. Here the expected scaling behavior reads

nk;N2xk /n'. ~21!

Thus the dynamic simulation should yield a numeric
value forxk /n uu , the static simulation a value forxk , and the
finite-size simulation a value forxk /n' . If, on inserting the
DP values ofn uu andn' , the three methods~19!–~21! lead to
the same numerical result for the exponentxk , to within
numerical errors, we may conclude that the scaling ex
nentsn'

(k) andn uu
(k) are indeed equal to the DP exponents.
i-

st

f
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-
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e

l

-

We observed that the quality of the numerical results c
be improved considerably if we measure theintegrated den-
sities

mk5(
j 50

k

nj ~22!

instead of the densitiesnk . The integrated densitymk is the
probability of finding the interface at heighth<k. Since
xk21.xk , we havenk21!nk near criticality, and therefore
mk and nk scale asymptotically with the same exponen
The difference between the two quantities is illustrated
the case of dynamic simulations atqc in Fig. 2 ~for the
method of determiningqc , see below!. As one can see, the
graph for the integrated densitiesmk in the unrestricted
model shows almost perfect straight lines in a doub
logarithmic representation, while the corresponding cur
for n1, n2, andn3 still increase, which makes it impossible t
determine the corresponding exponents with the 1000 t
steps illustrated. The same observation, although with
numerical accuracy, holds for the restricted model. The
fore, instead ofnk , we always measure the integrated den
ties mk for which we assume the same scaling as in E
~19!–~21!.

The dynamic MC simulations are performed on a lar
system withN5104 sites starting from a flat interface. De
tecting deviations from the power law behavior, we find t
critical points qc50.232 67(3) for the unrestricted andqc
50.1889(1) for the restricted model@corresponding tog
50.4658 in Eq.~13!#. The time dependence ofmk at criti-
cality is averaged over typically 105 independent runs. The
results are shown in Fig. 2. From the slopes we estimate
critical exponentsxk /n uu . Using n i of DP, we obtain the
exponentsxk which are summarized in the left column o
Table I.

We note a numerical puzzle we have so far failed to
plain. The critical value ofq for the restricted model appear

FIG. 2. Dynamic simulations: the densitiesnk and the integrated
densitiesmk at criticality as a function of timet in Monte Carlo
steps~MCS! for the (U) unrestricted and (R) restricted growth
model. See Eq.~19!.
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to be given to high numerical accuracy byqu /(12qu) where
qu is the critical value of the unrestricted model. Wheth
this is sheer coincidence or whether it is a manifestation
some duality between the two models is an open questio

Static simulations are then carried out in the smooth ph
q,qc . Varying ueu5qc2q from 1023 to 1021, we first
equilibrate the interface on a large lattice withN5104 sites
over a time interval up to 105 time steps. Then the stationar
densitiesmk are averaged over a time interval of the sa
size. The results are again averaged over 100 indepen
runs. Using this method we can estimate the critical ex
nentsxk directly from the slopes of the lines in Fig. 3~see
the middle column in Table I!. The exponents are extracte
from the fit of the curves for smalle where the asymptotic
form is valid.

Finally finite-size simulations at criticality are carried o
for various lattice sizesN58,16,32, . . . ,1024. Starting from
a flat interface, we averaged the integrated densitiesmk over
time intervals proportional toNz, ranging from 5000 time
steps forN58 up to 33107 time steps forN51024. Since
finite-sized systems at criticality have a small but fin
growth rate, the densitiesmk have to be measured with re
spect to the actual lowest level of the interface, i.e., in
comoving frame. The slopes of the curves in Fig. 4 give
estimate ofxk /n' ~and therewithxk ; see right column of
Table I!. In addition, the finite growth rate measured in th
type of simulation is expected to scale asv;N2y/n', which
allows an estimate of the exponenty in Eq. ~17!. Our results
are y51.71(5) for the unrestricted model andy51.76(10)
for the restricted model~see Fig. 4!, which is in agreemen
with our scaling predictiony5n i.1.734 in Eq.~17!.

TABLE I. Numerical estimates for the density exponen
x0 , . . . ,x3 for (U) the unrestricted and (R) the restricted version o
the growth model obtained by various simulation methods.

Dynamic method Static method Finite-size metho

x0 U: 0.275~5! 0.273~10! 0.276~5!

R: 0.270~10! 0.277~10! 0.265~10!

x1 U: 0.114~5! 0.110~10! 0.125~5!

R: 0.108~10! 0.110~10! 0.118~10!

x2 U: 0.039~15! 0.035~15! 0.045~10!

R: 0.022~15! 0.025~20! 0.033~15!

x3 U: 0.011~10! no result 0.015~10!

R: no result no result no result

FIG. 3. Static simulations: double logarithmic plot of the sa
ration value of the integrated densitiesmk vs ueu. See Eq.~20!.
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As a final check of scaling, we can also obtain a fin
time collapse using the short time data from static simu
tions. In the smooth phase the expected scaling ismk(t)
;ueuxkf k(tueun uu), where f k(s)→ const fors→` and f k(s)
;s2xk /n uu for s→0. Figure 5 shows the scaling function
f k(s) for various values ofe ranging from21024 to 20.07
measured up to 104 time steps. The long time stationary va
ues of the densitiesmk in static simulations~20! correspond
to the saturation levels of the different curves.

Since the three different methods lead to the same res
for xk within numerical errors, we conclude that the scali
exponentsn'

(k) andn uu
(k) are indeed identical on all levels an

equal to the DP exponentsn' and n uu . We obtain the DP
exponentx05b, as expected at the bottom layer, whilex1
.0.12,x2.0.04,x3.0.015, . . . . These latter exponents
although showing the same trend, are clearly different
merically from those obtained using the heuristic picture
Sec. IV A. It is not clear whether$xk% for k.0 are related to
the DP exponents, or whether they are independent ex
nents. The fact that we obtain the same exponents in
restricted and the unrestricted model suggests that b
variants—at least with respect to the first few layers—belo
to the same universality class.

C. Scaling of the interface width

In this subsection we investigate the scaling properties
the interface width, defined by Eq.~8!, at criticality and as
the rough phase is entered. The latter measurements lea
to conclude that a complicated scaling behavior prevails.

First recall that in the smooth phase the interface explo
only a finite number of levels, and the width is finite. In th
rough phase the width is expected to diverge according

-

FIG. 4. Finite-size simulations: Measurement of the integra
densitiesmk and the growth velocityv at criticality as function of
the system sizeN. The solid~dashed! lines refer to the unrestricted
~restricted! model. See Eq.~21!.

FIG. 5. Finite time static simulations: Data collapse for t
scaled integrated densitiesmk as a function of time measured in th
smooth phase for various values ofe in the case of (U) the unre-
stricted and (R) the restricted growth model.
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W;N1/2, the behavior generic to moving interfaces in o
dimension@2#.

A naive scaling picture would suggest that the interfa
width may be written as W;ueu2h f (N/j')
;ueu2h f (Nueun'), where h is some critical exponent. We
refer to this picture as naive because implicit is the sim
scaling assumption of a single length scale in the problem
point we shall question in Sec. IV D. Within this naive pi
ture one chooses a scaling functionf , so as to obtain the
expectedAN behavior in the rough phase. This leads to t
following small e, largeN asymptotic limits:

W;ueu2h for e,0

W;Nh/n' for e50 ~23!

W;N1/2 en' /~22h! for e.0.

We now proceed to examine the actual behavior of the w
at criticality. In Figs. 6 and 7, width against time is plotte
for simulations run at criticality. For both unrestricted a
restricted models, a long time scaling behavior emerges

FIG. 6. Width at criticality as a function of time in the unre
stricted model. The graph is forN52048 and shows the growth o
the width starting from a flat interface averaged over 2000 runs.
straight line is a best fit through the long time points (24–212

MCS!, and has a slope of 0.24.

FIG. 7. Width at criticality as a function of time in the restricte
model. The graph is as for Fig. 6, and the system size isN52048.
The best fit through the longer time points (25–212 MCS! has a
slope of 0.43.
e

e
a

e

th

e-

fore the width saturates due to the finite length of the syst
For times shorter than the saturation time, the width at cr
cality, Wc , grows as

Wc;~ lnt !g. ~24!

Now since the saturation time is expected to scale asNz,
wherez is the dynamic exponent, one deduces that the s
ration scaling of the width is

Wc;~ lnN!g, ~25!

whereg is given byg.0.24'1/4 for the unrestricted model
andg.0.43 for the restricted model. The exponents are
tracted from a fit for large values oft where we expect the
asymptotic form~24! to hold ~see Figs. 6 and 7!. Although
the error ofg is difficult to estimate, these numerical resu
suggest that the critical exponenth in Eq. ~23! is in fact
equal to zero. For the restricted model the scaling of
width at criticality is similar to that of anunrestrictedpoly-
nuclear growth model@9#, whereg5 1

2. The relationship be-
tween the present models and PNG models will be discus
in Sec. VIII. However, for the unrestricted model the val
of g is clearly distinct from1

2, which shows that the critica
width could display nonuniversal behavior. On the oth
hand,g could be restricted to a finite number of possib
values. It should also be noted that in preliminary simu
tions the value ofg was erroneously assumed@17#.

We now examine how the saturation width diverges as
growth rate is increased and the interface enters the mo
phase. To do this, it is convenient to subtract out the criti
width and measureDW(e)5W(e)2Wc . SinceWc is negli-
gibly small as compared withW(e) for e.0, one expectsW
andDW to have the same asymptotic behavior. In Fig. 8, i
seen that the scaling behavior is

DW~e!;ex, ~26!

wherex50.95(5) for the unrestricted model.

e

FIG. 8. Double-logarithmic plot of width in the moving phase
a function ofe. The system size wasN5512 and each point is an
average over 2000 simulations. The simulations were started fro
flat interface and allowed to saturate over 213 MCS. The width was
then averaged over another 213 MCS. The straight line estimated
over two decades ine corresponds tox50.95. Simulations of the
restricted model yielded a similar behavior and estimated expo
valuex50.92.
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This result forx disagrees with the naive scaling pictu
~23!, which suggests that the width should diverge with t
exponentn'/250.55 ~given thath was found to be equal to
zero!. We are left to conclude that a more complex behav
than simple scaling takes place.

D. Length scales in the moving phase

In Sec. IV C, we saw that a simple scaling argument
volving only the DP scaling length does not describe c
rectly the numerical results. In this subsection the aim is
identify possible additional length scales, and indicate t
complex critical behavior may be present. Therefore the s
section is by nature speculative.

We investigate scaling lengths of the first few layers
the moving phase. We consider the correlation functio
^mk( i )mk( i 1r )& of the integrated densitiesmk @Eq. ~22!#
between sitesi and i 1r .

Let us first consider the bottom layer densitym05n0. In
thesmoothphase it has already been noted that the dynam
of the bottom layer~of the unrestricted model! is exactly that
of DP in the active phase. However, in themoving phase
there is a subtle difference between the present model
DP in the absorbing phase. This difference stems from
fact that in the present model there is no absorbing st
Instead, whenever a layer is completed the next highest l
becomes the bottom layer. We effectively move in a fra
comoving with the lowest uncompleted layer, and relabel
layers appropriately.

In order to show that this produces a nontrivial effect
plot ^mk( i )mk( i 1r )&/^mk& in Fig. 9. First recall that in the
DP absorbing phase near criticality one expects to se
power law decay ^n0( i )n0( i 1r )&/^n0&;^m0( i )m0( i
1r )&/^m0&;r 2b/n' of the correlation function up to a sca
ing length which diverges ase2n'. At lengths longer than
the scaling length the correlation function should decay
ponentially withr . In Fig. 9 fork50, we see an initial powe
law decay with power given by20.27, then a crossover a
r;j' to a new power law decay with power.20.76
~rather than to an exponential decay as would be the c
with usual DP scaling!. We checked for different system
sizes and values ofe that this qualitative behavior~crossover
to a new power law at long distance! was reproduced. Also

FIG. 9. Correlation functionŝ mk( i )mk( i 1r )&/^mk& in the
moving phase in the unrestricted model. The system parameter
N52048 ande50.02, and the results are an average over 1
simulations each run for 216 MCS to equilibrate.
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in Fig. 9, correlation functions for the integrated densities
higher levels are plotted, and again one sees crossover
tween two power laws. The two powers appear distinct
each levelk. Fork51 the two powers are 0.15 and 0.56, a
for k52 the two powers are 0.09 and 0.36. It appears that
crossovers occur at a length dependent onk although it is
difficult to quantify this. If the crossover lengths werek de-
pendent, then it would imply the different length scales ex
on different levels.

In order to give a heuristic explanation for the above b
havior, let us consider the density at the bottom layerm0

5n0. A picture that could explain the crossover phenome
in Fig. 9 is that the sites at the bottom level are grouped i
clusters. Each cluster displays the scaling behavior of an
tive DP cluster, and therefore is of typical sizee2n', and
within a cluster the correlation function decays as;r 2b/n'.
Thus the correlations within clusters generate the first po
law decay. However, one also has correlations between c
ters. Thus within the cluster picture the second power l
measures the decay of correlations between clusters.

A similar cluster picture could hold for the first and se
ond layersk51 and 2. Within the picture, the sites at th
first level, for example, are distributed in clusters. The fi
power law in thek51 curve of Fig. 9 measures the correl
tion within a cluster and the second measures correlat
between clusters. The fact that the crossover appears to o
at a different distancer than for the bottom layer indicate
that the clusters at the first level are larger than those at
bottom level. Therefore there is more than one length sc
in the problem.

This picture is far from being complete or verified unam
biguously, and many questions remain open. For examp
is not clear whether the second power laws in Fig. 9 contin
indefinitely or are cut off at some larger length. The nume
cal value ofx is also not explained.

E. Summary of the scaling picture

For the sake of clarity we summarize the scaling results
this section and the partial picture of scaling. First we ha
the smooth phase with exponentsxk associated with the den
sity at each level.x0 is given by the DP exponentb, whereas
xk for k>1 appears to be nontrivial, in the sense that they
not simply related to DP exponents. The simple approxim
tion of Sec. IV A gives the qualitative trend, but is ruled o
quantitatively by the numerics. As the roughening transit
is approached, the DP scaling lengthj' and scaling timej i
hold at all levels. This implies that approaching the transit
the dynamic exponent isz5n i /n' .

At the transition, the interface has a logarithmically d
verging width of the form~25!. However, the value ofg
appears to depend on which version of the model one si
lates. This could either point tog being nonuniversal or tha
it can take one of a finite number of values.

Above the transition the velocity grows with the DP e
ponent n i . This reflects the presence of the DP scali
length and time at the bottom level. However, by measur
the growth of the interface width, we have ruled out a sim
scaling picture involving only the DP scaling length. W
have provided evidence to suggest that there may be lo
scaling lengths which characterize the size of clusters of s

are
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at higher levels. This picture remains to be fully investigat
Likewise, the question of scaling times for different levels
the rough phase has not been fully addressed.~In the rough
phase the dynamic exponent should take the KPZ valuz
5 3

2 ).
It is interesting to note that in a very recent renormaliz

tion group analysis of the field theory introduced in Sec. V
multicritical behavior was identified@32#. This could be con-
sistent with the complicated scaling behavior we have
served.

V. SPONTANEOUS SYMMETRY BREAKING

The growth models defined in Sec. II may be viewed
examples of spontaneous symmetry breaking~SSB! in a one-
dimensional system with periodic boundary conditions an
nonconserved order parameter. As will be shown, the mo
display a robust local mechanism for eliminating islands
the minority phase generated by fluctuations.

The symmetry of the growth models, apart from spa
translation and reflection invariance, is a~discrete! transla-
tional invariance in the heights (Z`). In the smooth phase
this symmetry is broken, since the system spontaneously
lects one of the heights as a reference level, which t
serves as bottom layer for local fluctuations of the smo
interface.

A. Order parameters

In order to quantify the symmetry breaking, we define
magnetizationlike order parameter~valid for both the re-
stricted and the unrestricted models!

M15
1

N(
j 51

N

~21!hj . ~27!

This order parameter is clearly not conserved by the dyna
cal rules of the models. In the smooth phaseq,qc , it has a
nonvanishing expectation valuêM1&Þ0 in the thermody-

FIG. 10. MC simulation of the restricted model for a systems
size 600 at different values ofq. Each configuration is a row o
pixels, with sites at even~odd! heights represented by black~white!
pixels, visualizing the order parameterM1. Configurations at inter-
vals of seven moves per site are shown up to 2100 sweeps. Init
a large island of size 400 is introduced. Forq,qc , the island
shrinks and disappears, illustrating the mechanism that ins
long-range order in the smooth phase. The typical time it takes
the island to disappear depends onq, it increases and finally di-
verges whenq→qc . Similarly the magnitude of the order param
eter M1 ~visualized by the gray scale contrast between the
phases! decreases. At criticality the order parameter is zero, so
the island is not visible any more.
.

-
,

-

s

a
ls
f

l

e-
n
h

i-

namic limit, where^•••& denotes the thermal average. O
the other hand, in the rough phase the interface explo
many height levels; therefore, the contribution to the mag
tization at different sites are uncorrelated over long d
tances, and̂M1&50. Near the phase transition, we expe
the order parameter to vanish as

^M1&;ueuu1, ~28!

whereu1 is the associated critical exponent.
The order parameter and the SSB mechanism are il

trated in Fig. 10. Here the heights are represented by a
nating black and white coloring~cf. Fig. 1! and therefore the
average gray scale in the figure is related to the magnitud
M1. Also, it is shown how a large island of one phase shrin
when introduced into a system dominated by the other ph
thus ensuring the stability of the smooth phase. This beh
ior is typical of islands of all sizes, except for those exten
ing over the whole system.

Since the symmetry of the model in the heights isZ` , we
can define a family of order parameters which genera
M1:

Mn5U1

N(
j 51

N

expS 2p i h j

n11 DU. ~29!

These order parameters have the same qualitative behavi
M1, and can be understood as discrete Fourier transform
the height probability distribution. It turns out that each ord
parameter is characterized by a different critical exponen

^Mn&;ueuun. ~30!

As in the case of the density exponentsxk , we determined
the exponentsun numerically by static, finite-size, and dy
namic MC simulations. The most precise data are obtai
from dynamic simulations~see Fig. 11!. The numerical esti-
mates foruk are summarized in Table II. It seems that the

f

ly,

es
r

o
at

FIG. 11. Measurement of the order parameters^Mn& in dynamic
MC simulations for (U) the unrestricted and (R) the restricted vari-
ant of the growth model.

TABLE II. Numerical estimates for the order parameter exp
nentsuk obtained from dynamic MC simulations.

u1 u2 u3 u4 u5

Unrestricted: 0.64~3! 0.40~2! 0.24~2! 0.15~1! 0.11~1!

Restricted: 0.66~6! 0.37~4! 0.21~4! 0.14~3! 0.10~2!
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exponents are nontrivial in the sense that they canno
related in a simple manner by scaling relations to the kno
DP exponents.

B. External ordering fields

For each order parameterMn one can define a conjugat
ordering field that favors states where the order paramet
positive. This ordering field can be introduced by a perio
modulation of the growth rate, i.e., we replace the unifo
growth rateq by a height-dependent growth rate

q→q~hi !5q2l cosS 2phi

n11 D , ~31!

wherel is the magnitude of the ordering field. For examp
for n51 andl.0 the growth on the bottom layer and oth
even layers is penalized, whereas growth on odd layer
favored. At criticality, the response to this external field
expected to obey a power law behavior

Mn;lkn. ~32!

We measured the exponentskn in static MC simulation at
criticality ~see Fig. 12!. Varying l over two decades from
1023 to 1021, we obtain the estimatesk150.60(4), k1
50.42(3), k150.26(3), k150.17(3), and k150.12(3).
Comparision with the results in Table II suggest thatkn
5un .

C. Spontaneous breaking of continuous symmetries

So far, we have shown that the growth models discus
in this paper exhibit spontaneous breaking of adiscretesym-
metry in one dimension. It is therefore of interest to a
whether acontinuous symmetrycan also be broken in one
dimensional nonequilibrium models. Continuous symm
tries, where the order parameter can take a continuum
values, seem to be harder to break than discrete symme
Consider for example the equilibrium case: discrete sym
tries can be broken above one dimension; continuous s

FIG. 12. Response of the order parameterM1 to an external
ordering field at the critical point in the unrestricted model w
2000 sites. Measuring the slope of the line in the doub
logarithmic plot over two decades gives estimates for the respo
exponentskn ~see text!. The saturation for very low values ofl
seems to be a finite-size effect.
e
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metries, however, can be broken only above two dimensio
although weaker vortex ordering transitions are possible
2D ~Kosterlitz-Thouless transitions@29#!.

Here we present a version of the growth model with
continuous symmetry which is broken spontaneously in
smooth phase. The only difference between this version
the unrestricted model described above is that the heigh
crement at a growth move is a continuous rather than a
crete number.

The model is defined on a one-dimensional lattice w
periodic boundary conditions and continuous~real! height
variableshi at sitesi 51, . . . ,N. The interface evolves by
choosing a sitei at random and carrying out one of th
processes

hi→hi1z with probabilityq,

hi→min~hi ,hi 11! with probability~12q!/2, ~33!

hi→min~hi ,hi 21! with probability~12q!/2,

wherez is a positive real random number selected from a
distribution between 0 and 1. The symmetry of this mod
~apart from spatial translations and reflections! is continuous
translational invariance in the heights, i.e., overall shifts
the interface heights by any amount. The symmetry break
corresponds to the fact that in the smooth phase the inter
selects a given height which is a real number, and rema
pinned to that height for a time that grows exponentially w
the system size.

Starting from a flat interface at height zero, the dynam
taking place at the lowest level in the continuous model
exactly the same as in the unrestricted version of the disc
model, the simple reason being that in both cases each he
level is decoupled from the higher ones. This means t
both models have the same critical pointqc50.232 67(3).
Moreover, they have the same occupation of the lowest le
which is characterized byn05(qc2q)x0, where x05b
.0.277 is the DP density exponent.

Above the critical point, the interface is rough and has
finite growth velocity. Simulations show that the roughne
exponent characterizing the interface at this phase is con
tent with the KPZ exponents@2#, within numerical accuracy
However, an interesting difference from the discrete mo
occurs in the growth velocityv. As in the previous case, it is
related to the inverse of the island lifetime. However in t
present case, the step size by which the interface grows is
1, but rather a real random number between 0 and 1. E
completed layer corresponds to the growth of the interf
by the smallest surviving step. Now, from our results on
discrete models, we expect that at criticality the width b
haves as some power of lnN. Since the number of steps in
finite system is of the order ofN, we expect the smallest o
them to be of order 1/N. At the critical point, therefore, we
expect the following finite-size scaling for the velocity:

v;N2n uu /n'21, ~34!

which corresponds to the scaling

v;~q2qc!
y, y5n uu1n'.2.83. ~35!
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This has to be compared withy5n uu.1.73 in the discrete
model. These exponents are in good agreement with the
ues measured in MC simulations, as shown in Fig. 13.

It would be interesting to study order parametersMv

which are continuous generalizations ofMn in Eq. ~29!:

Mv5U1

N(
j 51

N

exp~2p ivhj !U. ~36!

As before, we expect a power law behavior^Mv&;ueuu(v),
whereu(v) depends continuously onv.

VI. MEAN FIELD APPROXIMATION

In this section we derive the mean field equations co
sponding to models~1!–~3!, and study the resulting stead
state distribution. We consider the unrestricted SOS mo
since the equations for this case are somewhat simpler. H
ever, both the restricted and unrestricted models are expe
to exhibit the same qualitative dynamical behavior.

To derive the mean field equations, we introduce at e
site i a set of variablesck( i ), k50, . . . ,̀ . Here ck( i ) is
equal to 1 if the interface at sitei is at heightk, and it is
equal to 0 otherwise. Let̂ck( i )& be the average ofck( i )
over all realizations of the dynamical equations starting w
the same initial configuration. Let us first consider the oc
pation of the zeroth level. The adsorption and desorpt
processes defined in Eqs.~1!–~3! result in the following
equation for̂ c0( i )&:

L
^]c0~ i !&

]t
52q^c0~ i !&1 1

2 ~12q!^c0~ i !~12c0~ i 21!!&

1 1
2 ~12q!^c0~ i !~12c0~ i 11!!&, ~37!

whereL is a time constant, which, for simplicity, may b
taken as 12q. Within the mean field approximation, on
replaces the correlation function̂c0( i )c0( j )& by the prod-
uct ^c0( i )&^c0( j )&. For the ring geometry considered in th
work ^c0( i )& is independent of the site indexi . Denoting
^c0( i )& by r0, we obtain the following dynamical equatio
for r0:

]r0

]t
52q̄r01r0~12r0!, ~38!

FIG. 13. Spontaneous breaking of a continuous symmetry:
graphs show the occupation of the bottom layern0 and the growth
velocity v in a system of sizeN at criticality. From the slopes we
obtain the exponentsx0 /n'50.245(10) andy/n'52.59(7).
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whereq̄5q/(12q). Similar considerations yield the follow
ing set of equations forrk5^ck( i )& for k>1:

]rk

]t
5q̄rk212q̄rk1rkS 12(

j 50

k

r j D 2rk(
j 50

k21

r j . ~39!

It is convenient to rewrite Eqs.~38! and~39! in terms of the
integrated density variables@cf. Eq. ~22!#

fk5(
j 50

k

r j . ~40!

Substituting Eq.~40!, and usingrk5fk2fk21 brings Eqs.
~38! and ~39! into the forms

]f0

]t
5ef02f0

2

]fk

]t
5efk2fk

21~12e!fk21 ~k>1!, ~41!

wheree512q̄. These equations have a stationary solut
corresponding to a smooth interface fore.0. The roughen-
ing transition takes place ate50. The stationary solution for
e.0 may be calculated by the following recursion relatio

fk5 1
2 @e1Ae214~12e!fk21#, ~42!

with f05e. To leading order ine, Eq. ~42! takes the form

fk5Afk21. ~43!

The steady state distribution corresponding to this recurs
relation is

fk5e~1/2!k
. ~44!

Therefore, the mean field values of the exponentsxk defined
in Eq. ~7! are given by

xk
MF5

1

2k
. ~45!

The integrated height densityfk is a monotonically increas
ing function ofk, varying frome for k50 to 1 fork→` ~see
Fig. 14!. It exhibits a rapid increase neark.km , which is
determined by the following equation:

fkm211fkm1122fkm
50. ~46!

The indexkm corresponds to the interface height at which t
densityrk5fk2fk21 is maximal. Using Eq.~43!, one finds
that, to leading order ine,

km'
1

ln2
ln@2 ln~e!#. ~47!

It is easy to see that the width of thef distribution remains
finite even in the limite→0. The intervalDk corresponding
to a change off from some valuefmin to another, sayfmax,
is given to leading order ine by

e
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Dk5
1

ln2
ln@ ln~fmin!/ ln~fmax!#. ~48!

This interval is independent ofe, and thus the width of the
fk distribution isfinite. This feature, together with Eq.~47!,
yield the following behavior for the average height:

^h&;A^h2&; ln@2 ln~e!# ~49!

We now turn to the magnetizationlike order parame
M15( j (21) jr j @see Eq.~27!#. For small e.0, Eq. ~44!
yields the following expression forM1:

M15e1 (
k51

`

e~1/2!k
~12e~1/2!k

!~21!k. ~50!

In Fig. 15, we plot the magnetization as a function
ln@2ln(e)#. It is readily seen thatM1 does not decay to zer
for small e. Rather, it oscillates with an amplitude whic
remains finite at smalle. This may easily be understood i
the following way: the main contribution to sum~50! comes
from a finite number of layers centered aroundk5km . As e
decreases,km increases, and the magnetization order para
eter probes different layers. Since the contributions of
layers have alternate signs, the magnetization becomes o

FIG. 14. Mean field approximation of the integrated height d
sity fk at levelk.

FIG. 15. Mean field approximation of the magnetizationM1 as
a function of ln@2ln(e)#.
r

f

-
e
cil-

latory. This feature is an artifact of the mean field appro
mation. In this approximation, fluctuations of the position
the interface are neglected. When they are taken into acc
they are expected to broaden the interface, resulting i
diverging width at the roughening transition. This shou
lead to a vanishing magnetization at the transition. In a si
lar fashion, the mean field theory of KPZ interfaces does
describe the roughening behavior.

VII. FIELD THEORY

In order to understand the universal properties observe
the growth models at criticality, it is useful to study the co
responding field theory. As will be explained below, such
field theory describes a hierarchy of unidirectionally coup
DP processes. Thus it should play a role in even more g
eral contexts, namely whenever DP-like processes
coupled unidirectionallywithout feedback.

Unlike the KPZ equation@2#, the field theory we conside
involves separate fields for each height level in order to
corporate the rule that atoms cannot desorb from the mid
of an island. Let us first try to guess the Langevin equatio
by adding appropriate diffusion and noise contributions, su
that ~a! the equation for the lowest level reproduces the
dinary Langevin equation for directed percolation@30#; ~b! at
a given time and position the sum over all height densit
(krk is equal to 1; and~c! the hierarchy of equations i
translational invariant in space and time as well as in
heights. The simplest set of Langevin equations that me
these requirements reads~suppressing the argumentsx,t)

] tr052q̄r01r0~12r0!1¹2r01h0 ~51!

] trk5q̄rk212q̄rk1rkS 12(
i 50

k

r i D 2rk(
i 50

k21

r i1¹2rk

2¹2rk211hk2hk21 ~k.1!, ~52!

wherehk(x,t) are field-dependent Gaussian noise fields w
two point correlations to be specified below. Notice that E
~51! is just the ordinary Langevin equation for DP@30#. One
can also verify that the sum over all density fields(k50

` rk is
a constant of motion.

As in Sec. VI, these equations can be simplified by int
ducing integrated density fieldsfk(x,t)5( j 50

k r j (x,t), re-
sulting in

] tfk5afk2fk
21q̄fk211¹2~fk2fk21!1hk , ~53!

wherea512q̄ and f2150. Interestingly, the introduction
of integrated densities also led to a considerable impro
ment of the numerical results in Sec. IV, suggesting t
these quantities are more natural in the context of the pre
problem than the height densitiesrk(x,t).

Although the Langevin equations~53! follow quite natu-
rally from principles~a!–~c! stated above, it can be dange
ous to conjecture the correlations of the noise fieldshk(x,t).
A systematic derivation of the Langevin equations and
noise correlations based on a bosonic operator forma
@31# will be presented in Ref.@32#. Dropping irrelevant op-

-



-
vin

-

x
s
an
s

s
-

s
n

f
t

nd

t

r-

ss
ugh-
ect
th

d in

ics
re-
n-
wth

. In
the
l
l
elow
ove
the
en
hen
ls
y-
l.

be-
. In

un-
n-

-

57 5009SMOOTH PHASES, ROUGHENING TRANSITIONS, AND . . .
erators@like ¹2fk21 in Eq. ~53!#, and introducing indepen
dent coefficients for all terms it is shown, that the Lange
equations are given by

] tfk5akfk2lkfk
21q̄kfk211Dk¹

2fk1hk , ~54!

with noise correlations

^hk~x,t !h l~x8,t8!&52Gk,lfk~x,t !d~x2x8!d~ t2t8!,
~55!

wherek, l . Notice that there are noise correlationsbetween
different height levelsk and l which are generated in a one
loop approximation by nontrivial mixed cubic vertices@32#.

In Sec. IV, we observed numerically that the scaling e
ponentsn' and n uu are identical on all height levels. Thi
observation can be verified easily within an ‘‘improved me
field approximation’’ as follows. Consider the scaling tran
formation

x→Lx, t→Lzt, fk→L2xkfk , ~56!

where z is the dynamical exponent andxk are the scaling
exponents of the fieldsfk . Under rescaling, Eqs.~54! and
~55! turn into

] tfk5akL
zfk2lkL

z2xkfk
21q̄kL

z1xk2xk21fk21

1DkL
z22¹2fk1hk8 , ~57!

^hk8~x,t !h l8~x8,t8!&

52Lz1x l2dGk,lfk~x,t !d~x2x8!d~ t2t8! ~k, l !,

~58!

whered is the spatial dimension. Thus an infinitesimal re
caling by L511m would result in a change of the coeffi
cients

]mak5akz,

]mlk5lk~z2xk!,

]mDk5Dk~z22!, ~59!

]mGk,l5Gk,l~z1x l2d!,

]mq̄k5q̄k~z1xk2xk21!.

At the critical dimensiond5dc , we expect the coefficient
to be invariant under rescaling. As usual, the DP equatio
the lowest levelk50 yields the solutionsz52, x052, and
dc54. The linear term is relevant, so that the parametera0
has to be tuned to zero~this is the mean-field critical point o
DP!. Also, at higher levelsk.0 the linear term is the mos
relevant contribution, and thusak50 is the multicritical
point in the mean field. Requiring that the nonlinearity a
coupling to the previous level are equally relevant (z1xk
2xk215z2xk), we are led to the solutionxk5212k. Iden-
tifying z5n uu /n' and xk5xk /n' we obtain, in agreemen
with Sec. VI, the mean field exponents
-

-

-

at

n uu
MF51, n'

MF5
1

2
, xk

MF5
1

2k
. ~60!

Field theories~54! and~55! may be interpreted as a hie
archy of DP processes which areunidirectionallycoupled by
the termq̄kfk21. Identifying the fieldsf0 ,f1 ,f2 , . . . with
densities of particlesA,B,C, . . . , this field theory corre-
sponds to the reaction-diffusion process

A↔2A, A→B,

B↔2B, B→C,

C↔2C, C→D,

. . . . . . .

MC simulations indicate that this reaction-diffusion proce
belongs indeed to the same universality class as the ro
ening transition discussed in this paper. We therefore exp
that this field theory describes not only the present grow
models but any system in which DP processes are couple
one direction.

VIII. RELATION TO POLYNUCLEAR
GROWTH MODELS

In the previous sections we have seen that the dynam
of the lowest layer undergoes a DP transition that cor
sponds to a transition from zero to finite velocity of the i
terface. For a class of models termed polynuclear gro
~PNG! @6,7,9,15,16#, which employsparallel dynamics, a
similar scenario pertains to the growth at the highest level
these models the use of parallel dynamics implies that
maximum velocity is 1, i.e., the sites at the highest leveh
5T grow at every time stepT. The sites at the highest leve
may be considered as active sites of a DP process, and b
the transition there is a nonzero density of such sites. Ab
the transition there are no sites at the highest level and
velocity is less than 1. This transition is lost, however, wh
the dynamics are performed random sequentially, since t
there is no maximum velocity. This contrasts with mode
~1!–~3!, where a phase transition is found whether the d
namics be implemented random sequentially or in paralle

In this section we shed some light on the connection
tween the present models and models of the PNG class
order to do this we first generalize the dynamics of the
restricted models~1!–~3! to encompass both random seque
tial and parallel dynamics. In a time stepall sites are updated
according to the following rule:

hi~T11!5hi~T! with prob. 12D

5hi~T!11 with prob.qD

5 min@hi~T!,hi 11~T!# with prob.~12q!D/2

5 min@hi 21~T!,hi~T!# with prob.~12q!D/2.

~61!

As D varies from 0 to 1, rule~61! interpolates between ran
dom sequential dynamics and parallel dynamics: forD
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!1/N the height of at most one site is modified at any tim
step, and the dynamics becomes random sequential; foD
51, all sites are modified at each time step and the dynam
is parallel.

We now make a transformation suggested to us by
Krug ~private communication!. If one defines

hi~T!5T2gi~T!, ~62!

the variablesgi(T) undergo the following dynamics:

gi~T11!

5gi~T!11 with prob. 12D

5gi~T! with prob.qD

5 max@gi~T!,gi 11~T!#11 with prob.~12q!D/2

5 max@gi 21~T!,gi~T!#11 with prob.~12q!D/2.

~63!

Rules~63! yield a growth model where the maximum velo
ity is 1 and the DP transition appears at the maximal he
level, as occurs with PNG models. However, it is importa
to note that the dynamics~63! is always parallel in nature
since the heights of many sites are modified at each t
step. Thus both random sequential and parallel version
Eq. ~61! are mapped onto a parallel rule@Eq. ~63!#.

We now compare Eq.~63! with a specific PNG mode
studied in Ref.@9#. In that model the heights of a one
dimensional interface are updated in parallel in two subste
First, all up~down! steps of the interface move determinis
cally left ~right! to a distance ofu lattice spacings. Then al
heights are incremented by 1 with probabilityp. ~For our
purposes it is convenient to group the two substeps in
reverse order to that of Ref.@9#, but this does not change th
dynamics.! Thus the model is unrestricted. For the caseu
51, this dynamics may be written as a single parallel upd
where

gi~T11!

5 max@gi 21~T!,gi~T!,gi 11~T!#11 with prob.p

5 max@gi 21~T!,gi~T!,gi 11~T!# with prob.~12p!.

~64!

Clearly the two dynamics~63! and ~64! are similar in char-
acter but distinct. Furthermore, in Ref.@9# it was found that
at pc.0.527 the width of the interface scales asW
;(lnN)1/2, which is distinct from the behavior of the unre
stricted model but similar to that of therestricted modelof
the present paper.

In this section we have seen a subtle connection betw
the growth models studied in the present paper and mo
similar in character to PNG models. This was done by g
eralizing the dynamics of the present model to a dynam
that interpolates between random sequential and para
Then, transforming the present model via Eq.~62!, one ob-
tains a model with parallel dynamics which has similarit
with, but is distinct from, the PNG models previously stu
cs

J.

t
t

e
of

s.

e

e,

en
ls
-
s

el.

ied. However, with the standard PNG model~64!, the dy-
namics is strictly parallel, and it is not clear if it can b
transformed to any random sequential model. Indeed, sim
employing the inverse transform of Eq.~62! yields another
model with strictly parallel dynamics.

IX. CONCLUSIONS

In summary, we have studied in detail a one-dimensio
stochastic growth model with random sequential dynam
that exhibits a transition from a smooth to a rough phase
studying the model, we have shown that some proper
may be understood directly from the scaling behavior of D
However, other properties and critical exponents appear n
trivial in the sense that they seem not to be related to
quantities in a simple manner. Furthermore, we have in
duced novel exponents such as those relating to the ma
tizationlike order parameters characterizing the SSB and
response of these order parameters to an ordering field.

One can also think of the model in terms of a system
unidirectionally coupled DP processes. We have propose
field theory which should describe the properties of this g
eral class of systems.

We are left with several open questions. First, can
values of the novel exponents be predicted? Second, can
critical behavior be described by a conventional scaling p
ture? In our study, we have indicated that the critical beh
ior may be quite complicated. This could be consistent w
multicritical behavior found in a study@32# of the field
theory proposed in Sec. VII.

We have also made a subtle connection between
present random sequential models and models simila
character to the parallel update PNG models such as
studied in@9#. It would be instructive to explore this poin
further.

It would also be of interest to study in more detail th
model @Eq. ~33!# that exhibits the breaking of a continuou
symmetry. In particular the order parameter~36! has not
been fully investigated.

The growth models and their scaling behavior were inv
tigated in one dimension. However, it is straightforward
define the models in higher dimensions where similar sca
behavior is expected to hold.

Let us finally remark that it would be very interesting
search for experimental realizations of the growth proces
discussed in this paper, in particular because of their rela
to DP. As pointed out by Grassberger@33#, the large body of
theoretical work on DP seems to be unbalanced by the
that there are no experiments where DP exponents have
tually been measured. It is not yet clear whether this is du
a lack of such experiments or to an oversimplification
nature in DP models. The growth models, however, sugg
another category of experiments where DP exponents
be identified, namely, absorption-desorption processes w
the evaporation of atoms from the middle of completed la
ers is highly suppressed.

ACKNOWLEDGMENTS

We thank P. Bladon, Y. Y. Goldschmidt, M. J. Howard,
Krug, V. Rittenberg, P. Sollich, U. C. Ta¨uber, and N. B.



iz
its
y
va

ta
at
at
la
v

O
it

e
to
i-

ra
in
o
i

th

e

a-
u-

e
he
ain
n.

te
c-

o

fine

57 5011SMOOTH PHASES, ROUGHENING TRANSITIONS, AND . . .
Wilding for interesting discussions. M.R.E. thanks the We
mann Institute for warm hospitality during several vis
when this work was in progress. U.A. was supported b
Rothchild Fellowship. This work was supported by Miner
Foundation, Munich, Germany.

APPENDIX: AN EXACTLY SOLVABLE CASE

It is instructive to consider a case where the steady s
can be calculated exactly. This will allow us to verify th
the interface is indeed rough in the moving phase, and, th
we allow some rate for desorption from the middle of a p
teau, the interface is rough independent of whether the
locity is positive, negative, or zero.

The transition rates we consider are that of the RS
model presented in Sec. I with the addition of a process w
ratep:

0 1→ 1 0 with rateg,

1 0→ 0 1 with rate 1,

2 0→ 0 2 with rateg,

0 2→ 2 0 with rate 1,
~A1!

0 0→ 1 2 with rateg,

1 2→ 0 0 with rate 2,

2 1→ 0 0 with rateg,

0 0→ 2 1 with ratep.

The process with ratep translates to desorption from th
middle of a plateau when the model is translated back in
growth model via Eq.~11!. We shall using a technique sim
lar to that employed recently in Ref.@14# ~see also Ref.@13#!
to show that if

p512g/2 ~A2!

the steady state probabilitiesP of a configuration may be
written in a factorized form

P~M !5ZN
2122M, ~A3!

whereM is the number of positive charges in the configu
tion andZN is a normalization. One also has the constra
that the only allowed configurations have equal numbers
positive and negative charges due to the fact that dynam
conserves the global charge. Taking this into account
normalizationZN is given by

ZN5 (
M50

N/2
N!

M ! M ! ~N22M !!
22M. ~A4!

In order to prove Eq.~A3! let us define variables
b10 ,b11 ,b12 . . . , where, for example,b10 is the number
-

a

te

if
-
e-

S
h

a

-
t
f

cs
e

of bondsi ,i 11, where there is a positive particle at sitei
and a hole at sitei 11. Due to the fact that the global charg
is zero, we have b101b111b125b011b111b21

5b201b221b215b021b221b125M , which leads to

b101b0212b125b011b2012b21 . ~A5!

If Eq. ~A3! is to hold in the steady state, the following equ
tion for the balance of probability must hold for any config
ration:

@b101gb011b021gb2012b121gb211~g1p!b00#

3P~M !5~b011gb101b201gb02!P~M !

1~21g!b00P~M11!1~gb121pb21!P~M21!.

~A6!

To understand Eq.~A6!, note that the left-hand side gives th
rate of loss of probability due to the transitions out of t
configuration, and the right-hand side gives the rate of g
of probability due to the transitions into the configuratio
We now divide through by Eq.~A3!, and use Eq.~A5! in Eq.
~A6! to yield

~g1p!b002gb215~11g/2!b001~2p22!b21 ,
~A7!

which is satisfied for arbitraryb00,b21 when Eq. ~A2!
holds.

In order to calculate the velocity and roughness forN
large, one notes that the sum for the normalization~A4! is
dominated byM5N (121/A2); thereforer, the steady
state density of positive charges~and also that of negative
charges!, is

r5121/A21O~1/N!. ~A8!

Here we define the velocityv as the steady state growth ra
at an arbitrary sitei . Let ^cici 11& be the steady state expe
tation of finding a chargeci at sitei and a chargeci 11 at site
i 11; then

v5g^0i1 i 11&2^1 i0i 11&2^0i2 i 11&1g^2 i0i 11&

1~3g/221!^0i0i 11&22^1 i2 i 11&1g^2 i1 i 11&.

~A9!

Form ~A3! implies that correlation functions factorize t
leading order in 1/N ~e.g.,^1 i1 i 11&.r2), and one finds

v52~g21!r~122r!1~3g/221!~122r!21~g22!r2

1O~1/N!

.~22A2!~g21!. ~A10!

One can also calculate the roughness exactly. First we de
the height at sitei relative to siteN as
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hi5(
j 51

i

cj . ~A11!

Clearly ^hi&50, therefore the widthw is defined through

w25
1

N(
i 51

N

^hi
2&. ~A12!

A moderate calculation then yields

w2/N5r/31O~1/N!.~121/A2!/3. ~A13!
,

z

Result~A13! implies that when Eq.~A2! holds, the interface
is always rough, and indeed the prefactor does not depen
g.

In the casep50, we see from Eq.~A2! thatg52, and we
are clearly in the moving phase of our original grow
model. Wheng51, it is easy to check that we have a d
tailed balance, so that the interface is in equilibrium, a
again we expect it to be rough. Equation~A13! verifies that
in the case of nonzerop @and when Eq.~A2! holds#, the
interface is rough whether it be moving upwards (g.1),
downwards (g,1), or not at all (g51).
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